
Reactivity of an Iron–Oxygen Oxidant Generated upon Oxidative Decarboxylation of Biomimetic Iron(II) α-Hydroxy Acid Complexes
Author(s) -
Sayantan Paria,
Sayanti Chatterjee,
Tapan Kanti Paine
Publication year - 2014
Publication title -
inorganic chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.348
H-Index - 233
eISSN - 1520-510X
pISSN - 0020-1669
DOI - 10.1021/ic402443r
Subject(s) - chemistry , decarboxylation , oxidative decarboxylation , hydroxylation , ligand (biochemistry) , medicinal chemistry , reactivity (psychology) , stereochemistry , benzoic acid , organic chemistry , catalysis , receptor , medicine , biochemistry , alternative medicine , pathology , enzyme
Three biomimetic iron(II) α-hydroxy acid complexes, [(Tp(Ph2))Fe(II)(mandelate)(H2O)] (1), [(Tp(Ph2))Fe(II)(benzilate)] (2), and [(Tp(Ph2))Fe(II)(HMP)] (3), together with two iron(II) α-methoxy acid complexes, [(Tp(Ph2))Fe(II)(MPA)] (4) and [(Tp(Ph2))Fe(II)(MMP)] (5) (where HMP = 2-hydroxy-2-methylpropanoate, MPA = 2-methoxy-2-phenylacetate, and MMP = 2-methoxy-2-methylpropanoate), of a facial tridentate ligand Tp(Ph2) [where Tp(Ph2) = hydrotris(3,5-diphenylpyrazole-1-yl)borate] were isolated and characterized to study the mechanism of dioxygen activation at the iron(II) centers. Single-crystal X-ray structural analyses of 1, 2, and 5 were performed to assess the binding mode of an α-hydroxy/methoxy acid anion to the iron(II) center. While the iron(II) α-methoxy acid complexes are unreactive toward dioxygen, the iron(II) α-hydroxy acid complexes undergo oxidative decarboxylation, implying the importance of the hydroxyl group in the activation of dioxygen. In the reaction with dioxygen, the iron(II) α-hydroxy acid complexes form iron(III) phenolate complexes of a modified ligand (Tp(Ph2)*), where the ortho position of one of the phenyl rings of Tp(Ph2) gets hydroxylated. The iron(II) mandelate complex (1), upon decarboxylation of mandelate, affords a mixture of benzaldehyde (67%), benzoic acid (20%), and benzyl alcohol (10%). On the other hand, complexes 2 and 3 react with dioxygen to form benzophenone and acetone, respectively. The intramolecular ligand hydroxylation gets inhibited in the presence of external intercepting agents. Reactions of 1 and 2 with dioxygen in the presence of an excess amount of alkenes result in the formation of the corresponding cis-diols in good yield. The incorporation of both oxygen atoms of dioxygen into the diol products is confirmed by (18)O-labeling studies. On the basis of reactivity and mechanistic studies, the generation of a nucleophilic iron-oxygen intermediate upon decarboxylation of the coordinated α-hydroxy acids is proposed as the active oxidant. The novel iron-oxygen intermediate oxidizes various substrates like sulfide, fluorene, toluene, ethylbenzene, and benzaldehyde. The oxidant oxidizes benzaldehyde to benzoic acid and also participates in the Cannizzaro reaction.