z-logo
open-access-imgOpen Access
Dispersion-Free Solvent Extraction of Cr(VI) from Acidic Solutions Using Hollow Fiber Contactor
Author(s) -
Francisco José Alguacil,
Manuel Alonso,
Félix A. López,
Aurora LópezDelgado,
Isabel Padilla
Publication year - 2009
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es9012273
Subject(s) - extraction (chemistry) , chemistry , microporous material , stripping (fiber) , aqueous solution , aqueous two phase system , dispersion (optics) , mass transfer , contactor , hollow fiber membrane , chromium , chromatography , phase (matter) , solvent , fiber , analytical chemistry (journal) , materials science , organic chemistry , quantum mechanics , optics , composite material , power (physics) , physics
The use of dispersión-free solvent extraction, through microporous hydrophobic membrane has been investigated. The hollow fiber contactor, with surface area of 1.4 m2 was used to extract Cr(VI) (0.005-0.12 g/L from aqueous sulphuric acidic media (pH 2.5-4.2 +/- 0.05). Several parameters such as extractant concentration, feed acidity and metal concentration in the initial aqueous solution were investigated. Results revealed that 15% v/v Cyanex 923 in Exxsol D-100 as organic phase and feed in the 2.5 pH range, gave optimum extraction (exceeding 95%) of Cr(VI) and it was possible to strip using 10 g/L hydrazine sulfate (also with recoveries exceeding 95%). In this step, Cr(VI) is immediately reduced to the less hazardous Cr(III) state. Results also showed that under the various experimental conditions, chromium(VI) extraction was rate-controlled by the interfacial reaction on the membrane surface. Typical overall mass transfer coefficients values are 4.2 x 10(-5) and 3.6 x 10(-6) cm/s for extraction and stripping operations, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom