
New Microprofiling and Micro Sampling System for Water Saturated Environmental Boundary Layers
Author(s) -
Anne-Lena Fabricius,
Lars Duester,
Dennis Ecker,
Thomas A. Ternes
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es501814b
Subject(s) - sampling (signal processing) , filtration (mathematics) , resolution (logic) , sediment , modular design , sediment–water interface , environmental science , image resolution , soil science , geology , computer science , engineering , mathematics , electrical engineering , paleontology , statistics , filter (signal processing) , operating system , artificial intelligence
The spatial high resolution of a microprofiling system was combined with the multi element capability of ICP-MS to enable a better understanding of element distributions and related processes across environmental boundary layers. A combination of a microprofiling system with a new micro filtration probe head connected to a pump and a fraction collector (microprofiling and micro sampling system, missy) is presented. This enables for the first time a direct, dynamic, and high resolution automatic sampling of small water volumes (<500 μL) from depth profiles of water saturated matrices (e.g., sediments, soils, biofilms). Different membrane cut-offs are available, and resolutions of a few (matrices with a high physical resistance) to a submillimeter scale (matrices with low physical resistance) can be achieved. In this Article, (i) the modular setups of two missys are presented; (ii) it is demonstrated how the micro probe heads are manufactured; (iii) background concentrations and recoveries of the system as well as (iv) exemplary results of a sediment water interface are delivered. On the basis of this, potentials, possible sources of errors, and future applications of the new missy are discussed.