z-logo
open-access-imgOpen Access
Limited Reversibility of Bioconcentration of Hydrophobic Organic Chemicals in Phytoplankton
Author(s) -
Albert A. Koelmans
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es5003549
Subject(s) - bioconcentration , desorption , chemistry , environmental chemistry , sorption , hexachlorobenzene , phytoplankton , adsorption , tenax , chromatography , pollutant , organic chemistry , bioaccumulation , nutrient
Aging, reversibility, and desorption rates for the binding of hydrophobic chemicals (HOC) to phytoplankton cells have not been directly measured. Here the effect of bioconcentration time on subsequent desorption of hexachlorobenzene (HCB) and polychlorinated biphenyls (PCBs) was studied for the alga Monoraphidium minutum. Cell suspensions were exposed to HCB and PCBs spanning a range of log Kow values of 5.7 to 8.2, for 0.13 to 14 d. Subsequently, reversibility and desorption rates were assessed by extracting the chemicals from the cells using infinite sink extractions with Tenax beads or Empore disks employed in the cell suspension. Uptake was biphasic with constant relative contributions of fast surface sorption. Desorption was biphasic too and well fitted to a first order two compartment model. Increasing exposure times resulted in increasing slowly desorbing chemical fractions and decreased desorption rates from these fractions. For the most hydrophobic PCBs, slowly desorbing fractions were >80-90%, whereas desorption half-lives from these fractions ranged up to 120 days. The slow desorption rates directly prove that bioconcentration to algae can be rate limited and imply that already after a few hours of exposure, HOCs may become practically unavailable for repartitioning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom