Mercury Stable Isotopic Compositions in Coals from Major Coal Producing Fields in China and Their Geochemical and Environmental Implications
Author(s) -
Runsheng Yin,
Xinbin Feng,
Jiubin Chen
Publication year - 2014
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es500322n
Subject(s) - mercury (programming language) , coal , environmental chemistry , mass independent fractionation , fractionation , coal combustion products , chemistry , isotope , mineralogy , sulfur , isotope analysis , isotopes of carbon , stable isotope ratio , isotope fractionation , geology , total organic carbon , chromatography , quantum mechanics , computer science , programming language , physics , oceanography , organic chemistry
Total mercury (Hg) concentrations (THg) and stable mercury isotopic compositions were measured in coal samples (n = 61) from major coal producing fields in China. The THg concentrations in coals ranged from 0.05 to 0.78 μg g(-1), with a geometric mean of 0.22 μg g(-1). Hg isotopic compositions in coals showed large variations both in mass-dependent fractionation (MDF, δ(202)Hg: -2.36 to -0.14‰) and mass-independent fractionation (MIF, Δ(199)Hg: -0.44 to +0.38‰). The MIF signatures in coals may reveal important information on the coal-forming conditions (e.g., humic and sapropelic). The Δ(199)Hg/Δ(201)Hg of ∼1 determined in coals indicated that a portion of Hg has been subjected to photoreduction process prior to being incorporated to coals. On the basis of THg, Hg isotopic signatures, and other geological factors (e.g., total ash content and total sulfur content), the potential sources of Hg in coals from different coal producing regions were estimated. The main source of Hg in coals from southwestern China and eastern part of northern China is likely geogenic Hg, whereas the source of Hg in coals from other parts of northern China is mainly biogenic Hg. Finally, we estimated that Hg emission from coal combustion in China is characterized by diagnostic Hg isotopic signatures (δ(202)Hg: ∼-0.70‰ and Δ(199)Hg: ∼-0.05‰). The present study demonstrates that Hg isotopes can serve as a tool in understanding the sources and transformation of Hg in coals and may also be used as a tracer to quantify Hg emissions from coal combustion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom