How Redox Conditions and Irradiation Affect Sorption of PAHs by Dispersed Fullerenes (nC60)
Author(s) -
Thorsten Hüffer,
Mélanie Kah,
Thilo Hofmann,
Torsten Schmidt
Publication year - 2012
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es303620c
Subject(s) - sorption , fullerene , chemistry , dispersion (optics) , environmental chemistry , pyrene , anoxic waters , oxygen , pollutant , chemical engineering , carbon fibers , organic chemistry , materials science , adsorption , composite number , physics , optics , composite material , engineering
Surface properties, dispersion state, and sorption behavior of carbon-based nanomaterials will change after being released into the environment. To study these processes, five different scenarios were considered to probe the impact of changes in surface properties of dispersed fullerenes (nC60) on their sorption potential due to irradiation and presence of oxygen. Sorption isotherms of pyrene by nC60 were determined at environmentally relevant concentrations applying a passive sampling method. Isotherms of all dispersion scenarios were best fit with the Dubinin-Ashthakov model. Sorption was strongest for nC60 kept under anoxic condition. Both the presence of oxygen and irradiation significantly decreased the sorption capacity of nC60, while commercially available polyhydroxy fullerenes had the smallest sorption. In addition, competition for sorption sites was never observed in multiple sorbate experiments with four polycyclic aromatic hydrocarbons at small concentration. A strong relationship between sorption coefficients and hydrophobic properties of sorbates suggests that hydrophobic interactions are of major importance. The results emphasize that aging of released fullerenes results in a reduced strength of interactions with nonpolar compounds and, thus, reduces the impact on the environmental transport of hydrophobic pollutants.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom