z-logo
open-access-imgOpen Access
In Situ Observations of Nanoparticle Early Development Kinetics at Mineral−Water Interfaces
Author(s) -
YoungShin Jun,
Byeongdu Lee,
Glenn A. Waychunas
Publication year - 2010
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/es101491e
Subject(s) - nucleation , nanoparticle , aqueous solution , chemical engineering , chemical physics , particle (ecology) , chemistry , ionic bonding , ionic strength , homogeneous , materials science , mineralogy , nanotechnology , ion , geology , thermodynamics , organic chemistry , oceanography , physics , engineering
The early development of nanoparticles at mineral-water interfaces exerts crucial influences on the sequestration and transport of aqueous toxic species originating from both natural and anthropogenic sources. Homogeneous and heterogeneous nucleation often occur simultaneously, making it difficult to sort out whether toxic species are transported as free species, sorbed on nanoparticle surfaces, or trapped between aggregated nanoparticles. Here, using a newly developed X-ray scattering setup, we show how homogeneous nucleation and growth can be quantitatively separated from heterogeneous processes under aqueous conditions in real-time. Under conditions found in acid-mine-drainage (at pH 3.6 and [Fe(3+)] = 10(-4) M), heterogeneous nucleation of iron oxide nanoparticles on quartz dominated homogeneous nucleation by a factor of 192 (by particle volume). The smallest heterogeneously formed nanoparticles had radii of 1.7 ± 0.5 nm, significantly smaller than the size estimated using classical nucleation theory (CNT). Based on the data, the dominant nucleation and growth mechanisms of iron oxide nanoparticles depending on ionic strength were presented. Our findings have implications for the formation and transport of nanoparticles, and thus toxins, in both environmental and biological systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom