Calculation of Hyperfine Tensors and Paramagnetic NMR Shifts Using the Relativistic Zeroth-Order Regular Approximation and Density Functional Theory
Author(s) -
Jochen Autschbach,
Serguei Patchkovskii,
Ben Pritchard
Publication year - 2011
Publication title -
journal of chemical theory and computation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.001
H-Index - 185
eISSN - 1549-9626
pISSN - 1549-9618
DOI - 10.1021/ct200143w
Subject(s) - hyperfine structure , density functional theory , order (exchange) , paramagnetism , physics , relativistic quantum chemistry , zeroth law of thermodynamics , atomic physics , nuclear magnetic resonance , quantum electrodynamics , quantum mechanics , economics , finance
Density functional theory (DFT) calculations of molecular hyperfine tensors were implemented as a second derivative property within the two-component relativistic zeroth-order regular approximation (ZORA). Hyperfine coupling constants were computed for systems ranging from light atomic radicals to molecules with heavy d and f block elements. For comparison, computations were also performed with a ZORA first-order derivative approach. In each set of computations, Slater-type basis sets have been used. The implementation allows for nonhybrid and hybrid DFT calculations and incorporates a Gaussian finite nucleus model. A comparison of results calculated with the PBE nonhybrid and the PBE0 hybrid functional is provided. Comparisons with differing basis sets and incorporation of finite-nucleus corrections are discussed. The second derivative method is applied to calculations of paramagnetic NMR ligand chemical shifts of three Ru(III) complexes. The results are consistent with those calculated using a first-order derivative method, and the results are consistent for different functionals used. A comparison of two different methods of calculating pseudo-contact shifts, one using the full hyperfine tensor and one assuming a point-charge paramagnetic center, is made for the Ru(III) complexes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom