z-logo
open-access-imgOpen Access
A Genetically Encoded Alkyne Directs Palladium-Mediated Protein Labeling on Live Mammalian Cell Surface
Author(s) -
Nan Li,
Carlo P. Ramil,
Reyna K. V. Lim,
Qing Lin
Publication year - 2014
Publication title -
acs chemical biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 111
eISSN - 1554-8937
pISSN - 1554-8929
DOI - 10.1021/cb500649q
Subject(s) - bioorthogonal chemistry , alkyne , chemistry , click chemistry , palladium , biology , biochemistry , combinatorial chemistry , microbiology and biotechnology , catalysis
The merging of site-specific incorporation of small bioorthogonal functional groups into proteins via amber codon suppression with bioorthogonal chemistry has created exciting opportunities to extend the power of organic reactions to living systems. Here we show that a new alkyne amino acid can be site-selectively incorporated into mammalian proteins via a known orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair and directs an unprecedented, palladium-mediated cross-coupling reaction-driven protein labeling on live mammalian cell surface. A comparison study with the alkyne-encoded proteins in vitro indicated that this terminal alkyne is better suited for the palladium-mediated cross-coupling reaction than the copper-catalyzed click chemistry.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom