z-logo
Premium
Optimization of Ectoine Synthesis through Fed‐Batch Fermentation of Brevibacterium epidermis
Author(s) -
Onraedt Annelies E.,
Walcarius Bart A.,
Soetaert Wim K.,
Vandamme Erick J.
Publication year - 2008
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1021/bp0500967
Subject(s) - ectoine , fermentation , yeast extract , monosodium glutamate , brevibacterium , biochemistry , osmoprotectant , yield (engineering) , chemistry , food science , intracellular , chromatography , bacteria , biology , amino acid , microorganism , materials science , metallurgy , genetics , proline
A production process for ectoine has been developed, using Brevibacterium epidermis DSM20659 as the producer strain. First, the optimal conditions for intracellular synthesis of ectoine were determined. The size of the intracellular ectoine pool is shown to be dependent on the external salt concentration, type of carbon source, and yeast extract concentration. Under the optimized conditions of 1 M NaCl, 50 g/L monosodium glutamate, and 2.5 g/L yeast extract, a maximum concentration of intracellular ectoine of 0.9 g/L was obtained in shake flask cultures. After optimizing the batch fermentation parameters of temperature, pH, agitation, and aeration, the yield could be further increased by applying the fed‐batch fermentation principle in 1.5– to 2‐L fermentors. Glutamate and yeast extract were fed to the bacterial cells such that the total glutamate concentration in the broth remained constant. A total yield of 8 g ectoine/L fermentation broth was obtained with a productivity of 2 g ectoine/L/day. After the bacterial cells were harvested from the culture broth, the ectoine was recovered from them by a two‐step extraction with water and ethanol. Crystallization of the product was obtained after concentration of the extract via evaporation under reduced pressure. After this downstream process, 55% of the ectoine produced in the fermentor could be crystallized in four fractions. The first fractions were of very high purity (98%). This production process can compete with other described production processes for ectoine in productivity and simplicity. Further advantages are the relatively low amounts of NaCl needed and the absence of hydroxyectoine, often a byproduct, in the final product.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here