z-logo
Premium
Growing Cholesterol‐Dependent NS0 Myeloma Cell Line in the Wave Bioreactor System: Overcoming Cholesterol‐Polymer Interaction by Using Pretreated Polymer or Inert Fluorinated Ethylene Propylene
Author(s) -
Kadarusman Judith,
Bhatia Ravi,
McLaughlin John,
Lin WengLong R.
Publication year - 2005
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1021/bp050091+
Subject(s) - polypropylene , polymer , ethylene , adsorption , inert , cholesterol , polyethylene , chemistry , bioreactor , chemical engineering , polymer chemistry , low density polyethylene , materials science , organic chemistry , biochemistry , catalysis , engineering
Difficulty in growing cholesterol‐dependent NS0 cells in the Wave bioreactor using the original low‐density polypropylene (LDPE) bags has been encountered. It has been shown that in these bags chemically defined cholesterol is depleted from solution and therefore unavailable for the cells. Our data suggest that the cause of the depletion is not chemical but is due to the physical structure of the polymer. It is proposed that polymer structures with inkbottle pores retain cholesterol, whereas structures with V‐shaped pores adsorb cholesterol reversibly. Ultra‐low‐density polyethylene (ULDPE) bags can support cell growth but need to be pretreated with excess cholesterol. Another material, fluorinated ethylene propylene (FEP) does not need to be pretreated and is found to be superior (negligible cholesterol adsorption) as a result of its inert characteristics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom