Premium
Computational Study of Culture Conditions and Nutrient Supply in Cartilage Tissue Engineering
Author(s) -
Sengers B. G.,
Van Donkelaar C. C.,
Oomens C. W. J.,
Baaijens F. P. T.
Publication year - 2008
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1021/bp0500157
Subject(s) - cartilage , nutrient , biochemical engineering , tissue engineering , microbiology and biotechnology , biology , chemistry , anatomy , engineering , ecology , genetics
Different culture conditions for cartilage tissue engineering were evaluated with respect to the supply of oxygen and glucose and the accumulation of lactate. A computational approach was adopted in which the culture configurations were modeled as a batch process and transport was considered within constructs seeded at high cell concentrations and of clinically relevant dimensions. To assess the extent to which mass transfer can be influenced theoretically, extreme cases were distinguished in which the culture medium surrounding the construct was assumed either completely static or well mixed and fully oxygenated. It can be concluded that severe oxygen depletion and lactate accumulation can occur within constructs for cartilage tissue engineering. However, the results also indicate that transport restrictions are not insurmountable, providing that the medium is well homogenized and oxygenated and the constructapos;s surfaces are sufficiently exposed to the medium. The large variation in uptake rates of chondrocytes indicates that for any specific application the quantification of cellular utilization rates, depending on the cell source and culture conditions, is an essential starting point for optimizing culture protocols.