Premium
Combination of Extractive Solvent Addition and Immobilization Culture for Continuous Production of Scopoletin by Tobacco Cells
Author(s) -
Iizuka Yasuhiro,
Kato Ryohei,
ShibasakiKitakawa Naomi,
Yonemoto Toshikuni
Publication year - 2008
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1021/bp0498645
Subject(s) - scopoletin , solvent , chemistry , chromatography , organic chemistry , medicine , alternative medicine , pathology
Extractive solvent addition was combined with immobilization cultures of Nicotiana tabacum cells to produce scopoletin. Using various solvents, the partition coefficients of scopoletin between the solvent and water phases and the solvent toxicity to the cell viability were investigated. The effect of the solvent addition on cell growth and scopoletin production was elucidated in the suspension cultures. Coconut oil, one of the natural vegetable oils, was selected as the most suitable extractive solvent. The cells were immobilized in the calcium alginate gel bead coated with a cell‐free gel film and then the batch cultures with the addition of various volumes of the coconut oil were performed. The total scopoletin production increased with the solvent volume according to the amount of scopoletin transferred from the medium to the solvent. The maximum productivity obtained in the batch immobilization cultures was about 16 times larger than that in the suspension culture without solvent. A continuous production system, in which the fresh solvent was supplied to the culture system and the solvent containing scopoletin was recovered from it, was constructed. The integrated scopoletin production in the effluent oil attained 2.21 mg/gDCW for 30 days at 100 cm 3 /day without cell leakage.