z-logo
Premium
Solvent‐Free Enzymatic Synthesis of 1,3‐Diconjugated Linoleoyl Glycerol Optimized by Response Surface Methodology
Author(s) -
Guo Zheng,
Sun Yan
Publication year - 2004
Publication title -
biotechnology progress
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.572
H-Index - 129
eISSN - 1520-6033
pISSN - 8756-7938
DOI - 10.1021/bp034212m
Subject(s) - response surface methodology , yield (engineering) , substrate (aquarium) , glycerol , conjugated linoleic acid , chemistry , solvent , enzyme , chromatography , linoleic acid , organic chemistry , materials science , fatty acid , biology , ecology , metallurgy
An operation mode with N 2 bubbling under vacuum was employed for the solvent‐free synthesis of 1,3‐diconjugated linoleoyl glycerol (1,3‐dCLG) from conjugated linoleic acid (CLA) catalyzed by Novozym 435. The response surface methodology (RSM) was adopted for the optimization of the reaction conditions with five major factors (incubation time, temperature, enzyme load, substrate mole ratio, and system vacuum) and three responses (CLA conversion, 1,3‐dCLG yield, and acyl migration). Two sets of optimal conditions were recommended. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of 1,3‐dCLG yield. Under the optimal conditions, the yield of 1,3‐dCLG up to 93% was obtained. The reaction was scaled up to a production level of 100 g of 1,3‐dCLG at a yield of 90.7%, indicating a promising feature of the technology in industrial applications.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here