z-logo
open-access-imgOpen Access
Relations between Molecular, Crystalline, and Lamellar Structures of Amylopectin
Author(s) -
Torsten Witt,
James Doutch,
Elliot P. Gilbert,
Robert G. Gilbert
Publication year - 2012
Publication title -
biomacromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.689
H-Index - 220
eISSN - 1526-4602
pISSN - 1525-7797
DOI - 10.1021/bm301586x
Subject(s) - lamellar structure , amylopectin , amorphous solid , crystallite , crystallography , scattering , chemistry , size exclusion chromatography , small angle x ray scattering , materials science , stereochemistry , optics , organic chemistry , physics , starch , enzyme , amylose
Chain (branch) length distributions (CLD) from size-exclusion chromatography of a series of waxy starches were parametrized using both an empirical and a biosynthesis-based method and correlated with their crystalline-amorphous lamellar properties obtained from X-ray scattering. Correlations were best seen with the biosynthesis-based parametrization. This showed for the first time that the following links between the CLD and lamellar parameters, the average interlamellar repeat distance and the distribution of these distances, were decreased by an increase in the proportion of very short branches and were increased by an increase in the proportion of intermediate and longer chains; further, the shoulder and linear sections of the CLD were found to affect the lamellar repeat distance and distribution. These effects are rationalized in terms of branch-length effects on the production of crystallites and the presence of portions of longer branches in the amorphous regions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom