z-logo
open-access-imgOpen Access
Molecular Insight into Propeptide–Protein Interactions in Cathepsins L and O
Author(s) -
Maria Reif,
Lukas Mach,
Chris Oostenbrink
Publication year - 2012
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/bi300802a
Subject(s) - chemistry , protein precursor , cathepsin l , molecular dynamics , cathepsin , protonation , proteases , papain , biochemistry , biophysics , enzyme , biology , computational chemistry , ion , organic chemistry
Cathepsins are mammalian papain-like cysteine proteases that play an important role in numerous physiological and pathological processes. In the present study, various molecular dynamics (MD) simulations of pro- and mature human cathepsins L and O were performed. This study is the first to report MD simulations to complement the initial model structure of (pro-)cathepsin O through conformational sampling, thus offering insight into the maturation of procathepsin O, which to date has not been described experimentally. The overall fold of (pro-)cathepsin O appears very similar to that of (pro-)cathepsin L. The propeptide binding loop (PBL)-propeptide interface of both procathepsins is found to form a stable two-stranded β-sheet. Additional stabilization of the PBL-propeptide interface is provided by hydrophobic side chain contacts in procathepsin L, whereas this seems to be due to charge-dipole interactions in procathepsin O. Introduction of two mutations (L147P and G148P) into procathepsin O entails a significant loss of hydrogen bonding, disabling formation of the interfacial β-sheet. Simulations at different protonation states suggest that procathepsin L is more sensitive to a change in pH than procathepsin O. Potential differences between the maturation of procathepsin O and procathepsin L inferred from the MD simulations might be caused by (i) stronger PBL-propeptide interactions in procathepsin O due to salt-bridge formation across the interface, (ii) more limited entropic gain of the propeptide of procathepsin O upon release into the bulk solvent due to diverse conformational states sampled in the bound state, (iii) more pronounced entropic loss of the PBL in procathepsin O upon substrate binding caused by diverse conformational states sampled in the free, mature enzyme, and (iv) lower sensitivity of procathepsin O to pH change caused by the presence of fewer carboxylate groups at the PBL-propeptide interface.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom