Synthesis of Fluorophore-Tagged Xylosides That Prime Glycosaminoglycan Chains
Author(s) -
Vy M. Tran,
Balagurunathan Kuberan
Publication year - 2014
Publication title -
bioconjugate chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.279
H-Index - 172
eISSN - 1520-4812
pISSN - 1043-1802
DOI - 10.1021/bc400396z
Subject(s) - fluorophore , chemistry , glycosaminoglycan , biochemistry , heparan sulfate , biosynthesis , chondroitin sulfate , dermatan sulfate , chondroitin , residue (chemistry) , sulfation , stereochemistry , fluorescence , gene , physics , quantum mechanics
Biosynthesis and functions of glycosaminoglycan (GAG) chains are complex and remain elusive. To better understand the factors that regulate the biosynthesis and functions, fluorophore-tagged xylosides carrying two different linkages between fluorophore and xylose residue were synthesized and evaluated for their ability to prime GAG chains such as heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS) in various cell lines. These in vitro studies resulted in the identification of fluorophore-tagged xylosides that prime high molecular weight GAG chains. Primed GAG chains carrying a fluorophore group has several advantages for studying the factors that regulate the biosynthesis, analyzing intact fine structures at low detection limits, and setting the stage for studying structure-function relations of GAG chains of cellular origin.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom