z-logo
open-access-imgOpen Access
Mechanistic Aspects on Cyclopentadienylruthenium Complexes in Catalytic Racemization of Alcohols
Author(s) -
Madeleine C. Warner,
JanE. Bäckvall
Publication year - 2013
Publication title -
accounts of chemical research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.454
H-Index - 395
eISSN - 1520-4898
pISSN - 0001-4842
DOI - 10.1021/ar400038g
Subject(s) - racemization , chemistry , alkoxide , hydride , catalysis , enantioselective synthesis , kinetic resolution , combinatorial chemistry , stereochemistry , organic chemistry , metal
Cyclopentadienylruthenium complexes commonly serve as efficient transition metal catalysts in the racemization of alcohols. The combination of the racemization reaction with enzymatic resolution leads to dynamic kinetic resolution (DKR). In DKR, a theoretical yield of 100% is possible, making it a powerful tool for enantioselective synthesis. In this Account, we summarize the most important mechanistic aspects of racemization of alcohols reported over the past decade based on both experimental and computational results. Precatalyst activation is often necessary, either by heating the reaction or by adding an alkoxide-type base. The subsequent alcohol-alkoxide exchange is rapid and introduces the substrate into the catalytic cycle. This exchange requires a free coordination site, which may be created via several different mechanisms. Following alkoxide formation, racemization occurs via β-hydride elimination and subsequent readdition. In cyclopentadienyldicarbonylruthenium alkoxide complexes, which are 18-electron complexes, researchers originally considered two mechanisms for the creation of the free coordination site required for β-hydride elimination: a change in hapticity of the cyclopentadienyl ligand from η5 to η3 and dissociation of a CO ligand. Based on computational and experimental results, we have found strong support for the pathway involving CO dissociation. Researchers had also wondered if the substrate remains coordinated to the metal center (the inner-sphere mechanism) during the hydrogen transfer step(s). Using competition and crossover experiments, we found strong evidence for an inner-sphere mechanism. In summary, we have obtained a detailed picture of the racemization of alcohols by cyclopentadienylruthenium catalysts, leading to the development of more efficient catalytic systems for racemization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom