Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts
Author(s) -
Robert W. Atkinson,
Raymond R. Unocic,
Kinga A. Unocic,
Gabriel M. Veith,
Thomas A. Zawodzinski,
Alexander B. Papandrew
Publication year - 2015
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am508228b
Subject(s) - materials science , catalysis , ruthenium , platinum , methanol , surface modification , chemical engineering , thermal , carbon nanotube , nanotechnology , inorganic chemistry , organic chemistry , chemistry , engineering , physics , meteorology
Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures, including alloy formation, crystallite growth, and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm(2)) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm(2)) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm(2)) at 0.65 V vs RHE.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom