z-logo
open-access-imgOpen Access
Interfacing a Tetraphenylethene Derivative and a Smart Hydrogel for Temperature-Dependent Photoluminescence with Sensitive Thermoresponse
Author(s) -
Yingnan Jiang,
Xudong Yang,
Cheng Ma,
Chuanxi Wang,
Yang Chen,
Fengxia Dong,
Bai Yang,
Kui Yu,
Quan Lin
Publication year - 2014
Publication title -
acs applied materials and interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.535
H-Index - 228
eISSN - 1944-8252
pISSN - 1944-8244
DOI - 10.1021/am501106x
Subject(s) - materials science , photoluminescence , polyacrylic acid , molecule , nanoparticle , chemical engineering , lower critical solution temperature , derivative (finance) , polymer chemistry , nanotechnology , polymer , organic chemistry , composite material , copolymer , optoelectronics , chemistry , economics , financial economics , engineering
We report, for the first time, the design and synthesis of thermoresponsive (TR) photoluminescent (PL) hydrogel nanoparticles, with a core consisting of poly[styrene-co-(N-isopropylacrylamide)] (PS-co-PNIPAM) and a PNIPAM-co-PAA shell. PAA represents polyacrylic acid which interacts with our emitting molecule 1,2-bis[4-(2-triethylammonioethoxy)phenyl]-1,2-diphenylethene dibromide (d-TPE). The electrostatic interaction between each water-soluble d-TPE molecule and two AA repeat units activates these d-TPE molecules to exhibit strong PL. Our d-TPE doped PS-co-PNIPAM/PNIPAM-co-PAA particles in water display remarkable TR PL: the emission intensity decreased in the course of heating from 2 to 80 °C and recovered during cooling from 80 to 2 °C. Such linear, reversible, and sensitive TR PL is achieved by the use of both PAA and PNIPAM as the shell polymeric chain and by careful optimization of the d-TPE to AA feed molar ratio. Thus, the emission of the d-TPE molecule is affected sensitively by temperature. In addition to such an exceptionally temperature-dependent PL, the presence of CrO4(2-) resulted in the decrease of the emission intensity, which was also temperature-dependent. The present study provides a unified conceptual methodology to engineer functional water-dispersible hydrogel nanoparticles that are stimuli-responsive with the potential to advance various PL-based applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom