Cell-Free Protein Synthesis as a Prototyping Platform for Mammalian Synthetic Biology
Author(s) -
Margarita Kopniczky,
Caoimhe Canavan,
David W. McClymont,
Michael A. Crone,
Lorna Suckling,
Bruno Goetzmann,
Velia Siciliano,
James T. MacDonald,
Kirsten Jensen,
Paul S. Freemont
Publication year - 2020
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.9b00437
Subject(s) - synthetic biology , computational biology , biology , cell free protein synthesis , crispr , hela , protein biosynthesis , cell culture , microbiology and biotechnology , gene , genetics
The field of mammalian synthetic biology is expanding quickly, and technologies for engineering large synthetic gene circuits are increasingly accessible. However, for mammalian cell engineering, traditional tissue culture methods are slow and cumbersome, and are not suited for high-throughput characterization measurements. Here we have utilized mammalian cell-free protein synthesis (CFPS) assays using HeLa cell extracts and liquid handling automation as an alternative to tissue culture and flow cytometry-based measurements. Our CFPS assays take a few hours, and we have established optimized protocols for small-volume reactions using automated acoustic liquid handling technology. As a proof-of-concept, we characterized diverse types of genetic regulation in CFPS, including T7 constitutive promoter variants, internal ribosomal entry sites (IRES) constitutive translation-initiation sequence variants, CRISPR/dCas9-mediated transcription repression, and L7Ae-mediated translation repression. Our data shows simple regulatory elements for use in mammalian cells can be quickly prototyped in a CFPS model system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom