A Genetic Toolbox for Modulating the Expression of Heterologous Genes in the Cyanobacterium Synechocystis sp. PCC 6803
Author(s) -
Bo Wang,
Carrie A. Eckert,
PinChing Maness,
Jianping Yu
Publication year - 2017
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.7b00297
Subject(s) - heterologous , gene , heterologous expression , synechocystis , toolbox , biology , cyanobacteria , genetics , computational biology , gene expression , synthetic biology , microbiology and biotechnology , bacteria , recombinant dna , computer science , programming language
Cyanobacteria, genetic models for photosynthesis research for decades, have recently become attractive hosts for producing renewable fuels and chemicals, owing to their genetic tractability, relatively fast growth, and their ability to utilize sunlight, fix carbon dioxide, and in some cases, fix nitrogen. Despite significant advances, there is still an urgent demand for synthetic biology tools in order to effectively manipulate genetic circuits in cyanobacteria. In this study, we have compared a total of 17 natural and chimeric promoters, focusing on expression of the ethylene-forming enzyme (EFE) in the cyanobacterium Synechocystis sp. PCC 6803. We report the finding that the E. coli σ 70 promoter Ptrc is superior compared to the previously reported strong promoters, such as PcpcB and PpsbA, for the expression of EFE. In addition, we found that the EFE expression level was very sensitive to the 5'-untranslated region upstream of the open reading frame. A library of ribosome binding sites (RBSs) was rationally designed and was built and systematically characterized. We demonstrate a strategy complementary to the RBS prediction software to facilitate the rational design of an RBS library to optimize the gene expression in cyanobacteria. Our results show that the EFE expression level is dramatically enhanced through these synthetic biology tools and is no longer the rate-limiting step for cyanobacterial ethylene production. These systematically characterized promoters and the RBS design strategy can serve as useful tools to tune gene expression levels and to identify and mitigate metabolic bottlenecks in cyanobacteria.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom