z-logo
open-access-imgOpen Access
Switching Protein Localization by Site-Directed RNA Editing under Control of Light
Author(s) -
Paul Vogel,
Alfred Hanswillemenke,
Thorsten Stafforst
Publication year - 2017
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.7b00113
Subject(s) - rna , gene isoform , optogenetics , biology , computational biology , cytoplasm , rna binding protein , rna editing , protein engineering , synthetic biology , microbiology and biotechnology , genetics , gene , biochemistry , neuroscience , enzyme
Site directed RNA editing is an engineered tool for the posttranscriptional manipulation of RNA and proteins. Here, we demonstrate the inclusion of additional N- and C-terminal protein domains in an RNA editing-dependent manner to switch between protein isoforms in mammalian cell culture. By inclusion of localization signals, a switch of the subcellular protein localization was achieved. This included the shift from the cytoplasm to the outer-membrane, which typically is inaccessible at the protein-level. Furthermore, the strategy allows to implement photocaging to achieve spatiotemporal control of isoform switching. The strategy does not require substantial genetic engineering, and might well complement current optogenetic and optochemical approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom