Toward the First Data Acquisition Standard in Synthetic Biology
Author(s) -
Iñaki Sainz de Murieta,
Matthieu Bultelle,
R.I. Kitney
Publication year - 2016
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.5b00222
Subject(s) - dicom , interoperability , computer science , standardization , metadata , data exchange , context (archaeology) , modular design , synthetic biology , data model (gis) , data science , software engineering , world wide web , bioinformatics , programming language , artificial intelligence , paleontology , biology , operating system
This paper describes the development of a new data acquisition standard for synthetic biology. This comprises the creation of a methodology that is designed to capture all the data, metadata, and protocol information associated with biopart characterization experiments. The new standard, called DICOM-SB, is based on the highly successful Digital Imaging and Communications in Medicine (DICOM) standard in medicine. A data model is described which has been specifically developed for synthetic biology. The model is a modular, extensible data model for the experimental process, which can optimize data storage for large amounts of data. DICOM-SB also includes services orientated toward the automatic exchange of data and information between modalities and repositories. DICOM-SB has been developed in the context of systematic design in synthetic biology, which is based on the engineering principles of modularity, standardization, and characterization. The systematic design approach utilizes the design, build, test, and learn design cycle paradigm. DICOM-SB has been designed to be compatible with and complementary to other standards in synthetic biology, including SBOL. In this regard, the software provides effective interoperability. The new standard has been tested by experiments and data exchange between Nanyang Technological University in Singapore and Imperial College London.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom