EasyGuide Plasmids Support in Vivo Assembly of gRNAs for CRISPR/Cas9 Applications in Saccharomyces cerevisiae
Author(s) -
Ana Paula Jacobus,
Joneclei Alves Barreto,
Lucas S. de,
Yasmine Alves Menegon,
Ícaro Fier,
João Gabriel Ribeiro Bueno,
Leandro Vieira dos Santos,
Jeferson Gross
Publication year - 2022
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.2c00348
Subject(s) - crispr , saccharomyces cerevisiae , plasmid , computational biology , biology , genetics , synthetic biology , cas9 , gene
Most CRISPR/Cas9 applications in yeast rely on a plasmid-based expression of Cas9 and its guide RNA (gRNA) containing a 20-nucleotides (nts) spacer tailored to each genomic target. The lengthy assembly of this customized gRNA requires at least 3-5 days for its precloning in Escherichia coli , purification, validation, and cotransformation with Cas9 into a yeast strain. Here, we constructed a series of 12 EasyGuide plasmids to simplify CRISPR/Cas9 applications in Saccharomyces cerevisiae . The new vectors provide templates for generating PCR fragments that can assemble up to six functional gRNAs directly into yeasts via homologous recombination between the 20-nts spacers. By dispensing precloning in E. coli , yeast in vivo gRNA assembly significantly reduces the CRISPR/Cas9 experimental workload. A highly efficient yeast genome editing procedure, involving PCR amplification of gRNAs and donors, followed by their transformation into a Cas9-expressing strain, can be easily accomplished through a quick protocol.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom