Open Access
Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast
Author(s) -
Jessica T Stieglitz,
K. A. Potts,
James A. Van Deventer
Publication year - 2021
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.1c00370
Subject(s) - plasmid , yeast , computational biology , genetic code , amino acid , synthetic biology , genetics , biology , gene
Genetic code expansion is a powerful approach for advancing critical fields such as biological therapeutic discovery. However, the machinery for genetically encoding noncanonical amino acids (ncAAs) is only available in limited plasmid formats, constraining potential applications. In extreme cases, the introduction of two separate plasmids, one containing an orthogonal translation system (OTS) to facilitate ncAA incorporation and a second for expressing a ncAA-containing protein of interest, is not possible due to a lack of the available selection markers. One strategy to circumvent this challenge is to express the OTS and protein of interest from a single vector. For what we believe is the first time in yeast, we describe here several sets of single plasmid systems (SPSs) for performing genetic code manipulation and compare the ncAA incorporation capabilities of these plasmids against the capabilities of previously described dual plasmid systems (DPSs). For both dual fluorescent protein reporters and yeast display reporters tested with multiple OTSs and ncAAs, measured ncAA incorporation efficiencies with SPSs were determined to be equal to efficiencies determined with DPSs. Click chemistry on yeast cells displaying ncAA-containing proteins was also shown to be feasible in both formats, although differences in reactivity between formats suggest the need for caution when using such approaches. Additionally, we investigated whether these reporters would support the separation of yeast strains known to exhibit distinct ncAA incorporation efficiencies. Model sorts conducted with mixtures of two strains transformed with the same SPS or DPS both led to the enrichment of a strain known to support a higher efficiency ncAA incorporation, suggesting that these reporters will be suitable for conducting screens for strains exhibiting enhanced ncAA incorporation efficiencies. Overall, our results confirm that SPSs are well behaved in yeast and provide a convenient alternative to DPSs. SPSs are expected to be invaluable for conducting high-throughput investigations of the effects of genetic or genomic changes on ncAA incorporation efficiency and, more fundamentally, the eukaryotic translation apparatus.