
Tuning Gene Expression by Phosphate in the Methanogenic Archaeon Methanococcus maripaludis
Author(s) -
Taiwo S. Akinyemi,
Nana Shao,
Zhe Lyu,
Ian J. Drake,
Yuchen Liu,
William B. Whitman
Publication year - 2021
Publication title -
acs synthetic biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.156
H-Index - 66
ISSN - 2161-5063
DOI - 10.1021/acssynbio.1c00322
Subject(s) - methanococcus , corynebacterium glutamicum , biology , gene expression , promoter , gene , biochemistry , regulation of gene expression , methanogen , genetics , archaea , bacteria
Methanococcus maripaludis is a rapidly growing, hydrogenotrophic, and genetically tractable methanogen with unique capabilities to convert formate and CO 2 to CH 4 . The existence of genome-scale metabolic models and an established, robust system for both large-scale and continuous cultivation make it amenable for industrial applications. However, the lack of molecular tools for differential gene expression has hindered its application as a microbial cell factory to produce biocatalysts and biochemicals. In this study, a library of differentially regulated promoters was designed and characterized based on the pst promoter, which responds to the inorganic phosphate concentration in the growth medium. Gene expression increases by 4- to 6-fold when the medium phosphate drops to growth-limiting concentrations. Hence, this regulated system decouples growth from heterologous gene expression without the need for adding an inducer. The minimal pst promoter is identified and contains a conserved AT-rich region, a factor B recognition element, and a TATA box for phosphate-dependent regulation. Rational changes to the factor B recognition element and start codon had no significant impact on expression; however, changes to the transcription start site and the 5' untranslated region resulted in the differential protein production with regulation remaining intact. Compared to a previous expression system based upon the histone promoter, this regulated expression system resulted in significant improvements in the expression of a key methanogenic enzyme complex, methyl-coenzyme M reductase, and the potentially toxic arginine methyltransferase MmpX.