
Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials
Author(s) -
Rajender S. Varma
Publication year - 2016
Publication title -
acs sustainable chemistry and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.878
H-Index - 109
ISSN - 2168-0485
DOI - 10.1021/acssuschemeng.6b01623
Subject(s) - green chemistry , nanomaterials , nanomaterial based catalyst , chemistry , nanotechnology , catalysis , organic chemistry , nanoparticle , combinatorial chemistry , materials science , reaction mechanism
Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and nanomaterials. In the organic synthesis arena, examples comprise assembly of heterocyclic compounds, coupling and a variety of other name reactions catalyzed by basic water or recyclable magnetic nanocatalysts. Generation of nanoparticles benefits from the biomimetic approaches where vitamins, sugars, and plant polyphenols, including agricultural waste residues, can serve as reducing and capping agents. Metal nanocatalysts (Pd, Au, Ag, Ni, Ru, Ce, Cu, etc.) immobilized on biodegradable supports such as cellulose and chitosan, or on recyclable magnetic ferrites via ligands, namely dopamine or glutathione, are receiving special attention. These strategic approaches attempt to address most of the Green Chemistry Principles while producing functional chemicals with utmost level of waste minimization.