Reference Electrodes with Ionic Liquid Salt Bridge: When Will These Innovative Novel Reference Electrodes Gain Broad Acceptance?
Author(s) -
Ernö Lindner,
Marcin Guziński,
Taskia A. Khan,
Bradford D. Pendley
Publication year - 2019
Publication title -
acs sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.055
H-Index - 57
ISSN - 2379-3694
DOI - 10.1021/acssensors.8b01651
Subject(s) - ionic liquid , salt bridge , electrode , ionic bonding , salt (chemistry) , reference electrode , membrane , chemistry , materials science , ion , electrochemistry , organic chemistry , biochemistry , mutant , gene , catalysis
In this paper, we raise questions that researchers have to ask if they intend to replace a conventional reference electrode with an ionic liquid-based reference electrode and try to answer these questions based on our experiences and literature data. Among these questions, the most important is which ionic liquid should be used. However, beyond the chemical composition of the ionic liquid, to realize all the potential benefits of ionic-liquid based reference electrodes, there are additional, equally important considerations. Through examples we will show the importance of the (i) purity of the ionic liquid and the consequences of deviations from its stoichiometric salt composition, (ii) form of implementation of the ionic liquid-based reference electrode membrane (free-flowing salt bridge, or ionic liquid embedded in a membrane), (iii) membrane/gelling agent material and its composition, and (iv) experimental conditions (steady state or flowing conditions) under which it will be used. Finally, we recommend methods to test the performance criteria of the ionic liquid-based reference electrodes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom