Configurable Digital Virus Counter on Robust Universal DNA Chips
Author(s) -
Elif Seymour,
Neşe Lortlar Ünlü,
Erik P. Carter,
John H. Connor,
M. Selim Ünlü
Publication year - 2021
Publication title -
acs sensors
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.055
H-Index - 57
ISSN - 2379-3694
DOI - 10.1021/acssensors.0c02203
Subject(s) - microfluidics , cartridge , dna microarray , biosensor , virology , dna , ebola virus , lab on a chip , biology , virus , materials science , nanotechnology , gene , biochemistry , gene expression , genetics , metallurgy
Here, we demonstrate real-time multiplexed virus detection by applying a DNA-directed antibody immobilization technique in a single-particle interferometric reflectance imaging sensor (SP-IRIS). In this technique, the biosensor chip surface spotted with different DNA sequences is converted to a multiplexed antibody array by flowing antibody-DNA conjugates and allowing for specific DNA-DNA hybridization. The resulting antibody array is shown to detect three different recombinant vesicular stomatitis viruses (rVSVs), which are genetically engineered to express surface glycoproteins of Ebola, Marburg, and Lassa viruses in real time in a disposable microfluidic cartridge. We also show that this method can be modified to produce a single-step, homogeneous assay format by mixing the antibody-DNA conjugates with the virus sample in the solution phase prior to incubation in the microfluidic cartridge, eliminating the antibody immobilization step. This homogenous approach achieved detection of the model Ebola virus, rVSV-EBOV, at a concentration of 100 PFU/mL in 1 h. Finally, we demonstrate the feasibility of this homogeneous technique as a rapid test using a passive microfluidic cartridge. A concentration of 10 4 PFU/mL was detectable under 10 min for the rVSV-Ebola virus. Utilizing DNA microarrays for antibody-based diagnostics is an alternative approach to antibody microarrays and offers advantages such as configurable sensor surface, long-term storage ability, and decreased antibody use. We believe that these properties will make SP-IRIS a versatile and robust platform for point-of-care diagnostics applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom