
Therapeutic Opportunities of Targeting Allosteric Binding Sites on the Calcium-Sensing Receptor
Author(s) -
Jiayin Diao,
Aaron DeBono,
Tracy M. Josephs,
Jane E. Bourke,
Ben Capuano,
Karen J. Gregory,
Katie Leach
Publication year - 2021
Publication title -
acs pharmacology and translational science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.271
H-Index - 10
ISSN - 2575-9108
DOI - 10.1021/acsptsci.1c00046
Subject(s) - allosteric regulation , calcium sensing receptor , g protein coupled receptor , receptor , allosteric modulator , biology , medicine , genetics , parathyroid hormone , calcium
The CaSR is a class C G protein-coupled receptor (GPCR) that acts as a multimodal chemosensor to maintain diverse homeostatic functions. The CaSR is a clinical therapeutic target in hyperparathyroidism and has emerged as a putative target in several other diseases. These include hyper- and hypocalcaemia caused either by mutations in the CASR gene or in genes that regulate CaSR signaling and expression, and more recently in asthma. The development of CaSR-targeting drugs is complicated by the fact that the CaSR possesses many different binding sites for endogenous and exogenous agonists and allosteric modulators. Binding sites for endogenous and exogenous ligands are located throughout the large CaSR protein and are interconnected in ways that we do not yet fully understand. This review summarizes our current understanding of CaSR physiology, signaling, and structure and how the many different binding sites of the CaSR may be targeted to treat disease.