Synergistic Inhibition of SARS-CoV-2 Replication Using Disulfiram/Ebselen and Remdesivir
Author(s) -
Ting Chen,
ChengYin Fei,
Yiping Chen,
Karen Sargsyan,
ChunPing Chang,
Hanna S. Yuan,
Carmay Lim
Publication year - 2021
Publication title -
acs pharmacology and translational science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.271
H-Index - 10
ISSN - 2575-9108
DOI - 10.1021/acsptsci.1c00022
Subject(s) - disulfiram , covid-19 , virology , replication (statistics) , ebselen , coronavirus , viral replication , medicine , pharmacology , virus , infectious disease (medical specialty) , disease , glutathione peroxidase , catalase , oxidative stress , outbreak
The SARS-CoV-2 replication and transcription complex (RTC) comprising nonstructural protein (nsp) 2-16 plays crucial roles in viral replication, reducing the efficacy of broad-spectrum nucleoside analog drugs such as remdesivir and evading innate immune responses. Most studies target a specific viral component of the RTC such as the main protease or the RNA-dependent RNA polymerase. In contrast, our strategy is to target multiple conserved domains of the RTC to prevent SARS-CoV-2 genome replication and to create a high barrier to viral resistance and/or evasion of antiviral drugs. We show that the clinically safe Zn-ejector drugs disulfiram and ebselen can target conserved Zn 2+ sites in SARS-CoV-2 nsp13 and nsp14 and inhibit nsp13 ATPase and nsp14 exoribonuclease activities. As the SARS-CoV-2 nsp14 domain targeted by disulfiram/ebselen is involved in RNA fidelity control, our strategy allows coupling of the Zn-ejector drug with a broad-spectrum nucleoside analog that would otherwise be excised by the nsp14 proofreading domain. As proof-of-concept, we show that disulfiram/ebselen, when combined with remdesivir, can synergistically inhibit SARS-CoV-2 replication in Vero E6 cells. We present a mechanism of action and the advantages of our multitargeting strategy, which can be applied to any type of coronavirus with conserved Zn 2+ sites.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom