
Tunable Wide-Field Illumination and Single-Molecule Photoswitching with a Single MEMS Mirror
Author(s) -
Lucas Herdly,
Paul Janin,
Ralf Bauer,
Sebastian van de Linde
Publication year - 2021
Publication title -
acs photonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.735
H-Index - 89
ISSN - 2330-4022
DOI - 10.1021/acsphotonics.1c00843
Subject(s) - microelectromechanical systems , brightness , common emitter , materials science , field (mathematics) , optics , optoelectronics , physics , mathematics , pure mathematics
Homogeneous illumination in single-molecule localization microscopy (SMLM) is key for the quantitative analysis of super-resolution images. Therefore, different approaches for flat-field illumination have been introduced as alternative to the conventional Gaussian illumination. Here, we introduce a single microelectromechanical systems (MEMS) mirror as a tunable and cost-effective device for adapting wide-field illumination in SMLM. In flat-field mode the MEMS allowed for consistent SMLM metrics across the entire field of view. Employing single-molecule photoswitching, we developed a simple yet powerful routine to benchmark different illumination schemes on the basis of local emitter brightness and ON-state lifetime. Moreover, we propose that tuning the MEMS beyond optimal flat-field conditions enables to study the kinetics of photoswitchable fluorophores within a single acquisition.