z-logo
open-access-imgOpen Access
Controlled Fabrication of Flower-Shaped Au–Cu Nanostructures Using a Deep Eutectic Solvent and Their Performance in Surface-Enhanced Raman Scattering-Based Molecular Sensing
Author(s) -
Siva Kumar Krishnan,
Rodrigo Esparza,
Umapada Pal
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b04355
Subject(s) - deep eutectic solvent , fabrication , raman scattering , materials science , nanostructure , eutectic system , raman spectroscopy , solvent , nanotechnology , surface (topology) , chemical engineering , optics , composite material , chemistry , organic chemistry , microstructure , medicine , alternative medicine , physics , pathology , engineering , geometry , mathematics
Controlled synthesis of anisotropic bimetallic nanostructures with tunable morphology is of great current interest for their applications in surface-enhanced Raman scattering (SERS), plasmonics, and catalysis. Despite huge effort that has been devoted so far, fabrication of bimetallic nanostructures with controlled morphology and size remained to be a great challenge, especially when their shapes are anisotropic. Here, we report a facile, one-step synthetic approach for the fabrication of anisotropic bimetallic gold-copper nanostructures (Au-Cu NSs) of the 200-300 nm size range, using choline chloride/urea (ChCl/urea)-based deep eutectic solvent (DES) as the soft template. A concentration of the CuCl 2 precursor in the reaction mixture was found to impact the reduction kinetics of the metal ions, directly affecting the final morphology of the Au-Cu nanostructures and elemental distributions in them. The fabricated anisotropic Au-Cu NSs revealed a high SERS signal for crystal violet (CV) molecules adsorbed at their surfaces, with the signal enhancement factor as high as 0.21 × 10 6 and capacity of detecting CV molecules of concentrations as low as 10 -10 M in their aqueous solutions. The growth mechanism of the anisotropic bimetallic nanostructures in DES and their SERS performance has been discussed. The simple DES-assisted synthesis strategy presented in this work can be adopted for large-scale nonaqueous fabrication of other bimetallic nanostructures in a quite "greener" way.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom