Effect of Bifunctional β Defensin 2-Modified Scaffold on Bone Defect Reconstruction
Author(s) -
Yiyu Peng,
Lunhao Li,
Qingyue Yuan,
Ping Gu,
Zhengwei You,
Ai Zhuang,
Xiaoping Bi
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b04249
Subject(s) - osteopontin , chemistry , runx2 , osteocalcin , alkaline phosphatase , in vivo , scaffold , bone healing , biomedical engineering , biochemistry , anatomy , biology , immunology , medicine , microbiology and biotechnology , enzyme
Bone tissue engineering has emerged as an effective alternative treatment to the problem of bone defect. To repair a bone defect, antibiosis and osteogenesis are two essential aspects of the repair process. By searching the literature and performing exploratory experiments, we found that β defensin 2 (BD2), with bifunctional properties of antibiosis and osteogenesis, was a feasible alternative for traditional growth factors. The antimicrobial ability of BD2 against Staphylococcus aureus and Escherichia coli was studied by the spread plate and live/dead staining methods (low effective concentration of 20 ng/mL). BD2 was also demonstrated to enhance osteogenesis, with higher messenger RNA (mRNA) and protein expression of the osteogenic markers collagen I (Col1), runt-related transcription factor 2 (Runx2), osteopontin (Opn), and osteocalcin (Ocn) in vitro (1.5-2.5-fold increase compared with the control group in the most effective concentration group), which was consistent with the alkaline phosphatase (ALP) and alizarin red S (ARS) staining results. We implanted poly(sebacoyl diglyceride) (PSeD) combined with BD2 and rat bone tissue-derived mesenchymal stem cells (rBMSCs) under the back skin of rats and found that the inflammatory response was significantly lower with this combination than with the PSeD/rBMSCs scaffold without BD2 and the pure PSeD group and was similar to the control group. Importantly, when assessed in a critical-sized in vivo rat 8 m diameter calvaria defect model, a scaffold we developed combining bifunctional BD2 with porous organic polymer displayed an osteogenic effect that was 160-200% greater than the control group. The in vivo study results revealed a significant osteogenic response and antimicrobial effect and were consistent with the in vitro results. In summary, BD2 displayed a great potential of simultaneously promoting bone regeneration and preventing infection and could provide a viable alternative to traditional growth factors applied in bone defect repair.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom