z-logo
open-access-imgOpen Access
Recent Advances in Semiconductor–Graphene and Semiconductor–Ferroelectric/Ferromagnetic Nanoheterostructures for Efficient Hydrogen Generation and Environmental Remediation
Author(s) -
Simrjit Singh,
Mohd Faraz,
Neeraj Khare
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b03913
Subject(s) - materials science , graphene , semiconductor , heterojunction , charge carrier , nanotechnology , photocatalysis , optoelectronics , chemistry , biochemistry , catalysis
Semiconductor heterostructures have attracted intensive research attention during the past few years owing to their great potential for energy and environmental remediation related applications. Effective optical absorption and efficient separation of photogenerated charge carriers are among the key factors for achieving high efficiency in a photocatalytic process. This mini-review summarizes state-of-the-art activities in designing nanosemiconductor heterostructures using multifunctional semiconductors for solar-to-hydrogen conversion and degradation of organic pollutants. Various novel design strategies such as semiconductor/graphene heterojunctions including graphene as a semimetal and photosensitizer, semiconductor/ferromagnetic, and semiconductor/ferroelectric nanoheterostructures for enhancing the performance of photocatalytic processes have been discussed. Finally, key challenges and future prospects for designing more efficient photocatalytic materials are briefly outlined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom