z-logo
open-access-imgOpen Access
Atomic Force Microscopy Imaging of Crystalline Sucrose in Alcohols
Author(s) -
Yuya Teduka,
Akira Sasahara,
Hiroshi Ōnishi
Publication year - 2020
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02660
Subject(s) - atomic force microscopy , microscopy , materials science , sucrose , chemistry , crystallography , chemical engineering , nanotechnology , optics , organic chemistry , physics , engineering
Imaging nanometer- or molecule-scale topography has been achieved by dynamic atomic force microscopy (AFM) when a solid object of interest is damaged by vacuum exposure or electron irradiation. Imaging in a liquid offers a means to remove contaminations from the surface scanned using the microscope tip when the object is soluble to the surrounding liquid, typically water. In the present study, we attempted to take topographic images of crystalline sucrose. A problem arose due to the high solubility of this compound to water. Cantilever oscillation could not be excited in the saturated, viscous aqueous solution. By using n -hexanol instead of water, the solubility in the solvent and thus viscosity of the solution were reduced sufficiently to excite cantilever oscillation. Single-height steps and sucrose molecules were recognized in the images and thereby recorded on the (001)-oriented facets of sucrose crystals. Furthermore, two-dimensional distribution of liquid-induced force pushing or pulling the tip was mapped on planes perpendicular to the hexanol-sucrose interface. Observed uneven force distributions indicated liquid hexanol structured on the corrugated surface of sucrose. The viscosity tuning demonstrated here, which is not limited to hexanol instead of water, extends the range of liquid-solid interfaces to be probed by dynamic AFM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom