z-logo
open-access-imgOpen Access
Amine Functionalization of Silica Sol–Gel Thin Films via Kinetic Doping: A Novel, Green Approach
Author(s) -
Jessica M. Jensen,
Wai Tak Yip
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b02275
Subject(s) - polyethylenimine , ethylenediaminetetraacetic acid , surface modification , copper , materials science , thin film , chemical engineering , environmentally friendly , leaching (pedology) , scanning electron microscope , nanotechnology , chemistry , chelation , metallurgy , composite material , ecology , transfection , biochemistry , environmental science , biology , soil water , soil science , engineering , gene
Amine-functionalized thin films are highly desirable technologies for analytical, material, and biochemistry applications. Current functionalization procedures can be costly, environmentally unfriendly, and require many synthetic steps. Here, we present an inexpensive and facile way to functionalize a silica thin film with a 25 000 MW branched polyethylenimine (BPEI), consistent with green chemistry principles. Using UV-vis spectroscopy and scanning electron microscopy, BPEI was determined to be loaded into the film at an approximately 0.5 M concentration, which is a 500× increase from the loading solution used. The films were also tested for copper(II) sequestration to assess their potential for heavy metal sequestration and showed a high loading capacity of 10 ± 6 mmol/g. Films proved to be reusable, using ethylenediaminetetraacetic acid to chelate copper and regenerate the films, with only a 6% reduction in the amount of copper(II) ions sequestered by the third use. The films also proved stable against leaching over the course of 1 week in solution, with less than 1% of the original BPEI lost under various storage conditions (i.e., storage in deionized (DI) water, storage in dilute BPEI solution, storage in DI water after annealing). These films show promise for multiple applications, from heavy metal sequestration to antifouling applications, while being inexpensive, facile, and environmentally friendly to synthesize. To our knowledge, this is the first time that BPEI has been doped into silica thin films.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom