Modification of the Surface Properties of AlxGa1–xN Substrates with Gradient Aluminum Composition Using Wet Chemical Treatments
Author(s) -
Sara Gleco,
O. Romanyuk,
Ivan Gordeev,
K. Kuldová,
Tania Paskova,
Albena Ivanisevic
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01467
Subject(s) - x ray photoelectron spectroscopy , chemical composition , surface modification , passivation , phosphoric acid , oxide , hydrogen peroxide , characterization (materials science) , materials science , chemical engineering , chemical modification , surface charge , analytical chemistry (journal) , raman spectroscopy , chemical species , chemistry , nanotechnology , layer (electronics) , organic chemistry , polymer chemistry , physics , optics , engineering
The surface properties of biomolecular gradients are widely known to be important for controlling cell dynamics, but there is a lack of platforms for studying them in vitro using inorganic materials. The changes in various surface properties of an Al x Ga 1- x N film (0.173 ≤ x ≤ 0.220) with gradient aluminum content were quantified to demonstrate the ability to modify interfacial characteristics. Four wet chemical treatments were used to modify the surface of the film: (i) oxide passivation by hydrogen peroxide, (ii) two-step functionalization with a carboxylic acid following hydrogen peroxide pretreatment, (iii) phosphoric acid etch, and (iv) in situ functionalization with a phosphonic acid in phosphoric acid. The characterization confirmed changes in the topography, nanostructures, and hydrophobicity after chemical treatment. Additionally, X-ray photoelectron spectroscopy was used to confirm that the chemical composition of the surfaces, in particular, Ga 2 O 3 and Al 2 O 3 content, was dependent on both the chemical treatment and the Al content of the gradient. Spectroscopic evaluation showed red shifts in strain-sensitive Raman peaks as the Al content gradually increased, but the same peaks blue-shifted after chemical treatment. Kelvin probe force microscopy measurements demonstrated that one can modify the surface charge using the chemical treatments. There were no predictable or controllable surface charge trends because of the spontaneous oxide-based nanostructured formations of the bulk material that varied based on treatment and were defect-dependent. The reported methodology and characterization can be utilized in future interfacial studies that rely on water-based wet chemical functionalization of inorganic materials.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom