Coupled Pretreatment with Liquid Nitrogen and Ball Milling for Enhanced Cellulose Hydrolysis in Water
Author(s) -
Feng Shen,
Shuang Sun,
Jirui Yang,
Mo Qiu,
Xinhua Qi
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b01406
Subject(s) - cellulose , formic acid , crystallinity , hydrolysis , nitrogen , yield (engineering) , ball mill , materials science , chemistry , chemical engineering , acid hydrolysis , organic chemistry , composite material , engineering
A key problem in the conversion of cellulose into chemicals and fuels is the low product yield from cellulose due to its robust structure. In this work, for the first time, cellulose was pretreated with coupling of liquid nitrogen and ball milling (LN-BM) for cellulose hydrolysis. After the LN-BM treatment, the glucose yield from cellulose by HCl in water increased by almost 2 times and yield of formic acid catalyzed by H 2 SO 4 -NaVO 3 was more than 3-fold that obtained from untreated cellulose. The yields were also much higher than that from the individually ball-milled cellulose. The structure variation of cellulose indicated that reduction of both crystallinity index and molecular weight contributed to improving the conversion efficiency, but the former was the dominant factor. The combination of liquid nitrogen and ball milling developed in this work is an effective and environment-friendly approach for cellulose pretreatment.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom