Toward a Better Understanding of Different Dissolution Behavior of Starches in Aqueous Ionic Liquids at Room Temperature
Author(s) -
Jinwei Wang,
Fei Ren,
Jinglin Yu,
Les Copeland,
Shuo Wang,
Shujun Wang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00962
Subject(s) - dissolution , granule (geology) , ionic liquid , starch , aqueous solution , solvent , chemical engineering , chemistry , ionic bonding , amylose , viscosity , materials science , ion , organic chemistry , engineering , composite material , catalysis
The purpose of this study was to understand the dissolution behavior of maize and potato starches in 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]):water mixtures at room temperature. With an increasing ratio of ionic liquid (IL):water, the long- and short-range ordered structures and granule morphology of both starches were disrupted progressively. The multiscale structure of maize starch was disrupted completely after treatment with the [Emim][OAc]:water mixture of 6:4, indicating good dissolution performance of this mixture for maize starch. This mixture seemed to provide a balance between the viscosity of the solvent and availability of ions to disrupt starch H-bonds. The different dissolution behaviors of maize and potato starches in [Emim][OAc]:water mixtures were attributed to structural differences of the granule surfaces. Our results showed that the dissolution behavior of starches was affected by both starch sources and properties of [Emim][OAc]:water mixtures, which may provide guidance for the development of green technology for processing of biopolymers with low energy consumption.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom