Antibacterial Activity of Chlorhexidine-Killed Bacteria: The Zombie Cell Effect
Author(s) -
Racheli BenKnaz,
Rami Pedahzur,
David Avnir
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00297
Subject(s) - zombie , chlorhexidine , bacteria , microbiology and biotechnology , antibacterial activity , chemistry , biology , medicine , dentistry , computer science , world wide web , genetics
We report a biocidal zombie effect of chlorhexidine, a wide-scope biocidal agent commonly used in disinfectant and antiseptic formulations. The zombie effect refers to the ability of dead bacteria killed by a biocidal agent to act as efficient biocidal agents toward a new generation of viable bacteria. The killed bacteria serve as a reservoir for the antibacterial agent incorporated within them; and the new viable population of bacteria acts as a trap of the bioactive agent, shifting the equilibrium of this agent between the reservoir in the dead cells and their aqueous environment. This report is a major generalization of the zombie phenomenon reported previously for silver from the points of view of extending to organic antibacterial agents; extending the effect to both Gram-negative- Pseudomonas aeruginosa PAO1-and Gram positive- Staphylococcus aureus -representative bacteria; showing that the zombie effect is maintained in the second and third generations; showing the effect to operate in an environment of growth media, which extends it to life-supporting environments; and proving that cross-killing is possible, that is, killed S. aureus cells fully inactivated viable P. aeruginosa .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom