z-logo
open-access-imgOpen Access
Femtosecond Thin-Film Laser Amplifiers Using Chirped Gratings
Author(s) -
Meng Wang,
Xinping Zhang
Publication year - 2019
Publication title -
acs omega
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00232
Subject(s) - grating , materials science , femtosecond , optics , optoelectronics , laser , supercontinuum , diffraction grating , ultrashort pulse , amplifier , distributed feedback laser , wavelength , physics , photonic crystal fiber , cmos
Ultrafast injection-locked amplification is achieved by sending femtosecond supercontinuum pulses into a polymeric thin film coated on a distributed feedback (DFB) microcavity consisting of chirped gratings. The spatial variation of the grating period led to the resonance of the DFB microcavity at different wavelengths for injection at different locations. This enables convenient and continuous tuning of the amplification spectrum by displacing the grating structures. The large area of the grating structures enabled large tuning range. The amplified spectrum can be continuously tuned from 545 to 580 nm through sliding the grating structures by about 3.5 mm. Sub-1 ps lifetime has been measured for the amplification process with a net amplification factor as large as 33. Injection locking enabled high-quality control of the divergence and transverse mode of the output laser beam.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom