Electrocatalytic Water Splitting through the NixSy Self-Grown Superstructures Obtained via a Wet Chemical Sulfurization Process
Author(s) -
Nanasaheb M. Shinde,
Pritamkumar V. Shinde,
Qi Xia,
Je Moon Yun,
Rajaram S. Mane,
Kwang Ho Kim
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.9b00132
Subject(s) - process (computing) , materials science , chemistry , chemical engineering , crystallography , computer science , engineering , operating system
We report water-splitting application of chemically stable self-grown nickel sulfide (Ni x S y ) electrocatalysts of different nanostructures including rods, flakes, buds, petals, etc., synthesized by a hydrothermal method on a three-dimensional Ni foam (NiF) in the presence of different sulfur-ion precursors, e.g., thioacetamide, sodium thiosulfate, thiourea, and sodium sulfide. The S 2- ions are produced after decomposition from respective sulfur precursors, which, in general, react with oxidized Ni 2+ ions from the NiF at optimized temperatures and pressures, forming the Ni x S y superstructures. These Ni x S y electrocatalysts are initially screened for their structure, morphology, phase purity, porosity, and binding energy by means of various sophisticated instrumentation technologies. The as-obtained Ni x S y electrocatalyst from sodium thiosulfate endows an overpotential of 200 mV. The oxygen evolution overpotential results of Ni x S y electrocatalysts are comparable or superior to those reported previously for other self-grown Ni x S y superstructure morphologies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom