Selective Conversion of Hemicellulose in Macroalgae Enteromorpha prolifera to Rhamnose
Author(s) -
Rui Zhang,
Ya-Guang Chen,
Yingdong Zhou,
Dongmei Tong,
Changwei Hu
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03600
Subject(s) - hemicellulose , monosaccharide , rhamnose , chemistry , xylose , biomass (ecology) , yield (engineering) , formic acid , catalysis , organic chemistry , botany , polysaccharide , biology , cellulose , materials science , ecology , fermentation , metallurgy
Direct hydrothermal conversion (HC) of macroalgae Enteromorpha prolifera was conducted over the temperature range of 140-240 °C. At 160 °C, monosaccharides and small molecular acids began to generate. A high yield (18.8%) of monosaccharides was obtained at 180 °C, whereas 29.6% of small molecular organic acids was attained at 200 °C. Formic acid (FA) was then employed as a catalyst, which could selectively catalyze the conversion of hemicellulose at low temperature (94.1%, 140 °C). Rhamnose (45.2%) based on the mass of carbohydrates in E. prolifera was produced by the catalysis of 0.7 mL of FA (160 °C, 60 min, 1 g of biomass loading). A low ratio of biomass amount to water was beneficial to the solution of water-soluble components of hemicellulose in E. prolifera to get high yields to monosaccharides. HC showed promise to be an applicable and efficient method in the treatment of E. prolifera with high conversion of carbohydrates.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom