Exploring the Effects of Stereo-Defect Distribution on Nonisothermal Crystallization and Melting Behavior of β-Nucleated Isotactic Polypropylene/Graphene Oxide Composites
Author(s) -
Xi Jiang,
Yiwei Fang,
Yansong Yu,
Jian Kang,
Ya Cao,
Ming Xiang,
Lu Li,
Xingyue Sheng,
Zengheng Hao
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03413
Subject(s) - materials science , tacticity , crystallization , differential scanning calorimetry , composite material , graphene , recrystallization (geology) , oxide , phase (matter) , chemical engineering , thermodynamics , chemistry , nanotechnology , polymer , paleontology , physics , organic chemistry , biology , engineering , metallurgy , polymerization
In this work, using two isotactic polypropylene (iPP) resins with similar average isotacticity and molecular weight but different uniformities of stereo-defect distribution, the β-nucleated iPP/graphene oxide (β-iPP/GO) composites (NPP-A and NPP-B) were prepared to investigate the effect of stereo-defect distribution on the nonisothermal crystallization kinetics and polymorphic melting behavior of the composites by means of scanning electron microscopy, wide-angle X-ray diffraction, and differential scanning calorimetry. The results showed that more uniform stereo-defect distribution led to a slight increase of the crystallization rate and decrease of the crystallization activation energy E c . NPP-B with more uniform stereo-defect was more favorable for the formation of a large amount of β-phase. Moreover, the role of the cooling rate was also discussed and it was found that the higher the cooling rate, the higher the β-phase content and the smaller the crystalline sizes, meanwhile, the higher the amount of β-phase with relatively lower thermal stability that will take part in β-α recrystallization during the subsequent melting process. For β-iPP/GO composites, although the cooling rate greatly influences the polymorphic behavior and crystalline structures of the composites, the uniformity of stereo-defect distribution was found to be the first factor determining the formation of the β-phase.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom