Achieving Deep-Blue Thermally Activated Delayed Fluorescence in Nondoped Organic Light-Emitting Diodes through a Spiro-Blocking Strategy
Author(s) -
Jiancheng Rao,
Chenyang Zhao,
Yanping Wang,
Keyan Bai,
Shumeng Wang,
Junqiao Ding,
Lixiang Wang
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03296
Subject(s) - blocking (statistics) , fluorescence , materials science , optoelectronics , oled , diode , light emitting diode , blue light , nanotechnology , computer science , optics , computer network , physics , layer (electronics)
A deep-blue thermally activated delayed fluorescence (TADF) emitter TXADO-spiro-DMACF has been reported for nondoped organic light-emitting diodes (OLEDs) by integrating an appropriate blocking unit with the donor (D)-acceptor (A)-donor (D)-type TADF emitter via a spiro linkage. Benefiting from the characteristic perpendicular arrangement, the intermolecular interactions are expected to be weakened to some degree. As a result, TXADO-spiro-DMACF shows a very small bathochromic shift of 8 nm associated with a narrowed full width at half maximum of 54 nm on going from solution to the film. The corresponding nondoped device successfully achieves a bright deep-blue emission, revealing Commission Internationale de l'Eclairage coordinates of (0.16, 0.09) and a peak external quantum efficiency of 5.3% (5.3 cd/A, 5.9 lm/W). The results clearly indicate that spiro-blocking is a promising strategy to develop deep-blue TADF emitters capable of nondoped OLEDs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom