z-logo
open-access-imgOpen Access
Fluorescence Turn-On, Specific Detection of Cystine in Human Blood Plasma and Urine Samples by Nitrogen-Doped Carbon Quantum Dots
Author(s) -
Gopi Kalaiyarasan,
Hemlata Chauhan,
James Joseph
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b03187
Subject(s) - detection limit , cystine , fluorescence , chemistry , cystinuria , urine , quantum dot , chromatography , materials science , biochemistry , cysteine , nanotechnology , physics , quantum mechanics , enzyme
Determination of cystine in blood and urine is very important to monitor and maintain the bio metabolism, immune systems, and prevent the tissue/DNA damage from free radicals, diagnosis of cystinuria disease, cancer, and related autoimmune diseases. Among the various detection methods, fluorometric detection is simple, rapid, and sensitive to cystine using nontoxic, inexpensive, highly fluorescent, stable carbon quantum dots (CQDs). The CQDs are prepared from p -phenylenediamine by the hydrothermal method to get the inherent optical features of pH-dependent and excitation wavelength-independent fluorescence emission along with high aqueous stability due to pre-eminent nitrogen content. The red emission of CQDs originates from the intrinsic core that is associated with photoinduced electron transfer (PET). The turn-on fluorescence observed in presence of cystine is due to decrease in the PET by oxidation of CQDs. On the basis of this observation, we have developed an assay for the determination of cystine with a concentration range of 10 nM to 10 μM and the limit of detection is 0.4 nM. Additionally, our assay shows good recoveries (93-105%) for the spiked blood plasma and urine samples using the standard addition method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom