z-logo
open-access-imgOpen Access
Ginger Extract Promotes Telomere Shortening and Cellular Senescence in A549 Lung Cancer Cells
Author(s) -
Navakoon Kaewtunjai,
Rawiwan Wongpoomchai,
Arisa Imsumran,
Wilart Pompimon,
Anan Athipornchai,
Apichart Suksamrarn,
T. Randall Lee,
Wirote Tuntiwechapikul
Publication year - 2018
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02853
Subject(s) - telomerase , telomere , senescence , a549 cell , telomerase reverse transcriptase , lung cancer , cancer cell , cancer research , microbiology and biotechnology , biology , cancer , chemistry , cell , biochemistry , dna , genetics , pathology , medicine , gene
Replicative senescence, which is caused by telomere shortening from the end replication problem, is considered one of the tumor-suppressor mechanisms in eukaryotes. However, most cancers escape this replicative senescence by reactivating telomerase, an enzyme that extends the 3'-ends of the telomeres. Previously, we reported the telomerase inhibitory effect of a crude Zingiber officinale extract (ZOE), which suppressed hTERT expression, leading to a reduction in hTERT protein and telomerase activity in A549 lung cancer cells. In the present study, we found that ZOE-induced telomere shortening and cellular senescence during the period of 60 days when these A549 cells were treated with subcytotoxic doses of ZOE. Using assay-guided fractionation and gas chromatography/mass spectrometry analysis, we found that the major compounds in the active subfractions were paradols and shogaols of various chain lengths. The results from studies of pure 6-paradol and 6-shogaol confirmed that these two compounds could suppress hTERT expression as well as telomerase activity in A549 cells. These results suggest that these paradols and shogaols are likely the active compounds in ZOE that suppress hTERT expression and telomerase activity in these cells. Furthermore, ZOE was found to be nontoxic and had an anticlastogenic effect against diethylnitrosamine-induced liver micronucleus formation in rats. These findings suggest that ginger extract can potentially be useful in dietary cancer prevention.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom