Noble-Metal-Free Iron Nitride/Nitrogen-Doped Graphene Composite for the Oxygen Reduction Reaction
Author(s) -
Tamás Varga,
Lívia Vásárhelyi,
Gergő Ballai,
Henrik Haspel,
A. Oszkó,
Ákos Kukovecz,
Zoltán Kónya
Publication year - 2019
Publication title -
acs omega
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.779
H-Index - 40
ISSN - 2470-1343
DOI - 10.1021/acsomega.8b02646
Subject(s) - graphene , materials science , nitride , composite number , noble metal , oxygen reduction reaction , nitrogen , metal , doping , inorganic chemistry , oxygen , chemical engineering , nanotechnology , chemistry , metallurgy , composite material , electrode , electrochemistry , optoelectronics , layer (electronics) , organic chemistry , engineering
Considerable effort has been devoted recently to replace platinum-based catalysts with their non-noble-metal counterparts in the oxygen reduction reaction (ORR) in fuel cells. Nitrogen-doped carbon structures emerged as possible candidates for this role, and their earth-abundant metal-decorated composites showed great promise. Here, we report on the simultaneous formation of nitrogen-doped graphene and iron nitride from the lyophilized mixture of graphene oxide and iron salt by high-temperature annealing in ammonia atmosphere. A mixture of FeN and Fe 2 N particles was formed with average particle size increasing from 23.4 to 127.0 nm and iron content ranging from 5 to 50 wt %. The electrocatalytic oxygen reduction activity was investigated via the rotating disk electrode method in alkaline media. The highest current density of 3.65 mA cm -2 at 1500 rpm rotation rate was achieved in the 20 wt % catalyst via the four-electrode reduction pathway, exceeding the activity of both the pristine iron nitride and the undecorated nitrogen-doped graphene. Since our catalysts showed improved methanol tolerance compared to the platinum-based ones, the formed non-noble-metal system offers a viable alternative to the platinum-decorated carbon black (Pt/CB) ORR catalysts in direct methanol fuel cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom